О применении современных вариантов раскраски и заполнения ячеек Периодической таблицы Д. И. Менделеева в школьном учебном процессе

- С. Л. Курилин, кандидат технических наук, доцент, БелГУТ, Гомель;
- **Е. С. Курилина,** магистрант, Институт подготовки научных кадров НАН РБ, Минск;
- С. Г. Дубков, учитель методист, СШ № 43, Гомель

Периодическая система химических элементов Д. И. Менделеева — мощный инструмент для систематизации сведений о свойствах химических элементов [1]. Недаром Организация объединённых наций (ООН) объявила 2019 г. годом Периодической таблицы химических элементов в связи с её 150-летием.

Мы предлагаем новые современные варианты раскраски и заполнения ячеек таблицы, которые запатентованы в Республике Беларусь.

Они соответствуют длинному варианту (длиннопериодной форме), утверждённому Международным союзом теоретической и прикладной химии (IUPAC) в качестве основного [2]. Группы пронумерованы арабскими цифрами от 1 до 18 и нет никаких реверансов в сторону короткой формы в виде римских цифр и латинских букв А и В. Короткая форма таблицы, содержащая восемь групп элементов, была официально отменена ИЮПАК в 1989 году. Несмотря на рекомендацию использовать длинную форму, короткая форма продолжает приводиться в большом числе российских справочников и пособий и после этого времени. Такую ситуацию некоторые исследователи связывают, в том числе, с кажущейся рациональной компактностью короткой формы таблицы, а также с инерцией, стереотипностью мышления и невосприятием современной (международной) информации. иностранной литературы короткая форма исключена полностью, вместо неё используется длинная форма. В Беларуси принята длинная форма таблицы, и именно в такой форме сделаны наши таблицы.

Первая таблица (рис. 1) называется «Периодическая система химических элементов Д. И. Менделеева с раскраской», патент РБ на промышленный образец № 4054; в дальнейшем будем её сокращённо называть ХИМ-таблицей.

Раскраска групп и семейств в XИМ-таблице соответствует рекомендациям ИЮПАК, однако она несколько усовершенствована. Способом заливки фона различными цветами обозначены слева направо: щелочные металлы (фиолетовый); щелочноземельные металлы (синий); переходные металлы (голубой); постпереходные металлы (зелёный); полуметаллы — металлоиды (жёлто-зелёный); другие неметаллы (жёлтый); галогены (оранжевый); благородные газы (красный). Внизу показаны лантаниды (светло-бирюзовый) и актиниды (бирюзовый). Такая раскраска позволяет глубже понять связь химических свойств элементов с их положением в Периодической системе и строением электронных оболочек. Изменение раскраски слева-направо соответствует цветам спектра от фиолетового до красного, что позволило сделать её доступной для восприятия даже людям с нарушениями цветового зрения (дальтоникам), количество которых составляет 8-9 % населения. Для обозначения радиоактивности использован серый цвет букв и символов.

Информация по каждому элементу: – атомная масса; электроотрицательность по Полингу; номер, символ, характерные и возможные степени окисления, русское название.

Для электроотрицательности использована таблица из англоязычной Википедии [3]. Это самая свежая информация, которая регулярно проверяется и подновляется ведущими мировыми специалистами. Однако эта таблица не содержит информации по гелию, неону, аргону. Эта информация восполнена из таблицы русскоязычной Википедии [4].

Рисунок 1 — Периодическая система химических элементов Д. И. Менделеева с раскраской; патент РБ на промышленный образец № 4054 (ХИМ-таблица)

Рисунок 2 – Упрощённый вариант ХИМ-таблицы

Степени окисления приведены в соответствии с англоязычной Википедией [5] в порядке убывания за исключением некоторых случаев, когда требовалось подчеркнуть характерные отрицательные; например хлор: **-1753**6...0. Здесь большие жирные цифры показывают характерные, а остальные – возможные степени окисления.

Впервые с 20 химическими элементами ученики знакомятся в **7 классе**. Здесь мы рекомендуем применить упрощённый вариант XИМ-таблицы без цифровой информации (рис. 2).

В **8 классе** более подробное знакомство с химическими элементами (металлы, неметаллы, амфотерность, газообразные, твёрдые, жидкие). Здесь в дополнение к ХИМ-таблице, в качестве информации для факультативных занятий, мы рекомендуем «Периодическую систему химических элементов с физическими свойствами», патент РБ на промышленный образец № 4046; в дальнейшем будем её сокращённо называть ФИЗ-таблицей (рис. 3).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1,000 1H 1-40 2000000		элементами, находятся в периодической зависимости от величины атомного веса элементов». Д. Менделеее Успоиные презоные обозничения фавического оновств занического поветь элементов															2He
2	6,941 3Li 1	9,012 4Be 2 fegusosii		-miny		оватиетики дАП - элементы с дВ - тутоплаване элементы, в т ч. с ць > элементы, в т ч. с ць > элементы, в т ч. с ць > элементы с - элементы с - элементы с - элементы с								12,011 6C 44033	14,007 7N 534 >3 8007	15,999 nO -2: -4	#F -14 drop	20,11 10N
3	12.900 12.Na 1 recont	24,305 12Mg 2 month		мета -сверх	офонодн прина прина	sucre	-CH 363		100° С радин элемента, в т.ч с временем полу- распада меняе суток					14SI 43 34	14Si 18P		35.453 17Cl -1753: 1	17Cl 18A
4	10.008 10K	40,078 26Ca 2	21Sc 331 000000	47,867 22Ti 4 9 3 3 4 5 3 100 mm	23V 23V 5+ 1+1	51,996 24Cr 60: 1.134	28Mn	26Fe	27Co 321 11.1	26Ni 24 - 2 24 - 2	29Cu 241102	65,382 36Zn 219-2 0000	31 Ga 315444	32Ge 427 5-4	74,922 33 AS 4432143-0 80400-08	78,960 34Se 842) 1-2 111111	79,504 31 Br -156341 (1006	36 B
5	37 Rb	87,620 36Sr 2	39Y 321	91,234 #Zr 4331-2	92,906 41Nb (6437143 model)		oTe	101,07 44Ru m. 134 possion	a(Rh (1.11)	#Pd #Pd #4121	anAg 1111011	#Cd 210 upont	9114,818 eIn 911438 more	мSn	\$121,760 \$1 Sb \$635 (54	127,60 82Te 842) +2 181070	126,904 53I -128,011	131.2 54.0 1111.
6	#Cs	137,327 56,Ba 2 figuil	130,965 seLa 331	176,49 22 Hf 4373-2 rejoint	180,948 22Ta 5432445 34000	74W	::Re	190,235 76Os 641 - 3-4 100mil	192,217 27 F	195,078 7sPt 842+ 3	195,956 29Au 1013333	mHg 2103	204,383 erTl 3:11-1-10 pagnell	207,20 82Pb 421 34	201,980 a)Bi 31 1153	ыPo	(210) usAt 4.111) aggr	1222 168 8 to
7	(223) 4 pomonii	(226) =Ra 2	227,827 89Ac 32	(267) maRf prep- depart	(270) rusDb	(269) tasSg categorit	(267) 167Bh	(260) 1mHs mount	(278) seeMt sette- sepail	(281) 110Ds 20ps 20ps	(281) 111Rg	[285] (12Cn nimp- nimel	[286] [13Nh mound	(289) (32F) (sepond	1289] 113Mc	(293) 116.L.v 200ep- sepail		1294
	De Literative		'		Ланта	аниды					enema ous		Услов	ни грин	oun MEI	AUIM	REME	TAJU
1	Курилин С. Л.			/	_	_	-	144,912 61Pm 3.1	130,360 62 Sm 3 4 11 conspell		-	65Tb 3121 10068	162,500 64Dy 3+31 mappend	164,930 67 Ho 321	167,26 6aEr 311 2010	168,934 Tm 31 22960	20 Y b 32 1 streptell	176,0 711 3.1 mote
1	Патэнт	PE Mt	4046	1	Акти	ниды				up - miring	NAVODEROS.	moss, sped	nune 42 K et - ejenca					
				•	232,038 mTh	231,036 91Pm	238,029 92U	237,848 93Np	244,064 84Pu	243,861 98Am	247,970 %Cm	247,676 97Bk	251,080 ••Cf	252.063 90Es	1257] 101Fm	1258] 101/Md	12591 182No	(262

Рисунок 3 – Периодическая система химических элементов с физическими свойствами; патент РБ на промышленный образец № 4046 (ФИЗ-таблица)

Здесь применены различные цвета и различные способы раскраски. Цвета заливки фона:

– Светло-коричневый – ферромагнетики (по цвету ржавчины на железе). Это железо, никель, кобальт, а также 5 редкоземельных металлов, проявляющих магнитные свойства при пониженной температуре: гадолиний, тербий, диспрозий, гольмий, эрбий.

Бледно-зелёный — полупроводники, их 12. В порядке возрастания ширины запретной зоны: альфа-олово, сурьма, теллур, германий, бор, кремний, мышьяк, йод, чёрный фосфор, селен, сера, углерод.

Светло-жёлтый — благородные (драгоценные) металлы (по цвету золота). Это золото, серебро, платина, а также металлы платиновой группы — палладий, иридий, родий, рутений и осмий.

Сиреневый – сверхпроводники. Здесь приведены только элементы с температурой перехода в сверхпроводящее состояние выше 4,2 К (температура кипения гелия). При меньших температурах, особенно вблизи 0 К, в сверхпроводящее состояние может

быть переведено большинство металлов. Сиреневым раскрашены: ниобий, свинец, ванадий, технеций, лантан, тантал, кремний (в тонких плёнках), ртуть.

Бледно-голубой — жидкости и элементы с температурой плавления ниже 100 °C. Это щелочные металлы: натрий, калий, рубидий, цезий, франций, а также галлий, бром и ртуть.

Светло-бирюзовый – газы (газы бледнее, чем жидкости). Это водород, гелий, азот, кислород, фтор, неон, хлор, аргон, криптон, ксенон и радон.

Цветные буквы и рамки:

Синие буквы — температура плавления ниже 1000 °C; синие буквы совместно с синей рамкой — легкоплавкие элементы (температура плавления ниже 300 °C); чем больше синего, тем ниже температура плавления.

Красные буквы – тугоплавкие (температура плавления выше 1524 °C – плавление железа); красные буквы совместно с красной рамкой – температура плавления выше 3000 °C; чем больше красного тем выше температура плавления.

Элементы с температурой плавления от 1000 °С до 1524 °С оставлены чёрными.

Серые буквы (на тёмном фоне белые) — радиоактивность (для элементов с периодом полураспада более суток — в названии элемента, менее суток — в обозначении латинского символа, чем больше серого, тем выше радиоактивность).

Цветная раскраска применена своя для каждого химического элемента периодической системы в зависимости от его физических свойств. При сочетании свойств цвета также сочетаются (например, ртуть и жидкость и сверхпроводник; фон залит сверху бледно-голубым, снизу сиреневым).

Условная граница между металлами и неметаллами проведена чёрной штриховой линией.

В **9 классе** более подробно рассматривается химия неметаллов, химические и физические свойства образуемых ими простых вешеств и важнейших соединений. Здесь в дополнение к ХИМ- и ФИЗ-таблицам. в качестве информации для факультативных занятий. мы рекомендуем «Периодическую систему химических элементов с биологическими свойствами». патент РБ на промышленный образец № 4047; в дальнейшем будем её сокращённо называть БИО-таблицей (рис. 4).

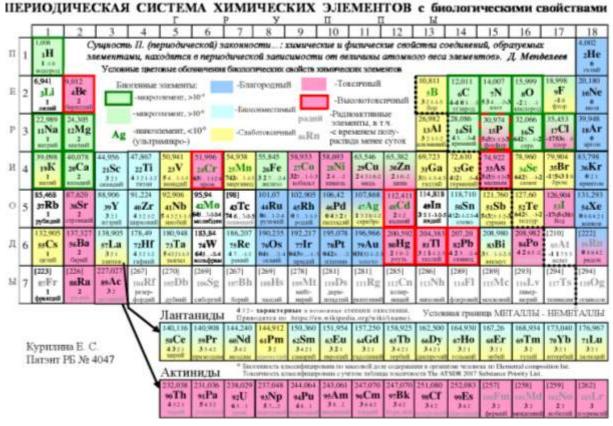


Рисунок 4 – Периодическая система химических элементов с биологическими свойствами; патент РБ на промышленный образец № 4047 (БИО-таблица)

Здесь цветная раскраска использует заливку фона, цветные рамки, а также цветные буквы. Это необходимо, чтобы передать всю гамму свойств; при раскраске элементов отдельные цвета и способы их применения сочетаются.

Для обозначения **биогенных** элементов использован зелёный цвет — цвет листвы и разрешающий свет светофора. Чем больше зелёного, тем больше содержание элемента в организме человека.

Макроэлементы — содержание в теле человека более одной сотой процента (более 10^{-4}). К ним относятся четыре традиционно называемые органогенами элемента: кислород, углерод, водород, азот, а также фосфор и сера; кроме того четыре из десяти «металлов жизни» — кальций, калий, натрий, магний. Сюда же попадает и хлор. Здесь применён максимум зелёного цвета — бледнозелёная заливка в зелёной рамке.

Микроэлементы — содержание в теле человека более миллионной доли (более 10^{-6}). Здесь 3 металла жизни (железо, цинк, медь) а также неметаллы фтор и кремний. Применена просто бледнозелёная заливка.

Наноэлементы — содержание в теле человека менее миллионной доли (менее 10^{-6}). Это новый термин. Традиционно они называются ультрамикроэлементы, однако нанокороче, красивее и с нашей точки зрения точнее. Сюда попали три металла жизни: марганец, кобальт, молибден, а также следующие элементы: кадмий, бор, селен, йод, никель, литий, хром, серебро. Они обозначены зелёными символами.

Для классификации мы воспользовались таблицей «Содержание в организме человека (Elemental composition list)» [5]. Таблица содержит 60 элементов, расположенных в порядке убывания, однако не все из них биогенные. Сложной задачей было отличить биогенные наноэлементы от примесей. Здесь не было бездумного копирования. Так, для ванадия и мышьяка, несмотря, что написано «Possibly», мы не нашли биологической роли. А вот для серебра, несмотря на «No», нашли и даже вынесли в пример условного обозначения наноэлементов в виде зелёного символа. Следы серебра (порядка две сотых миллиграмма на килограмм веса) содержатся в организмах всех млекопитающих. Но его биологическая роль недостаточно изучена. У человека повышенным содержанием серебра (три сотых миллиграмма на килограмм свежей ткани, или две тысячных весового процента в золе) характеризуется головной мозг. Интересно, что в изолированных ядрах его нервных клеток — нейронах — серебра гораздо больше (восемь сотых весового процента в золе).

Благородность и биосовместимость. В настоящее время установлено, что абсолютно инертных элементов нет; даже для гелия и неона получены соединения. Для благородных элементов применён голубой цвет, по ассоциации с выражением «голубая кровь» как символом благородства. Голубым залиты благородные газы — гелий, неон, аргон, ксенон, криптон и радон. Голубые также 8 благородных, то есть драгоценных металлов. Это золото, серебро, платина, иридий, палладий, рутений, родий и осмий.

Биосовместимыми металлы являются благодаря пассивации — прочной оксидной плёнке. К традиционно биосовместимым титану, цирконию и танталу добавили гафний, рений, олово и висмут. Олово традиционно используется для запайки консервных банок и для лужения медной посуды. Висмут используется в лекарствах. Также к биосовместимым отнесены, по примеру церия, редкоземельные металлы (соли церия применяются для лечения и предотвращения симптомов «морской болезни»; в стоматологии используется цериевая сталь и керамика с содержанием диоксида церия). Исключением является прометий (он радиоактивный). Для биосовместимых элементов использован бирюзовый цвет.

Токсичность. Для обозначения токсичности использованы жёлтый и красный цвета. Жёлтый – (свет светофора «внимание») – для обозначения слабой токсичности. Красный цвет – опасность – для обозначения токсичности; чем больше красного, тем выше токсичность. Розовая заливка – токсичные элементы; красная рамка с розовой заливкой – высокотоксичные элементы.

Для классификации использована таблица токсичности «*The ATSDR* 2017 *Substance Priority List*» [6]. Здесь в порядке убывания токсичности приведены 275 веществ; мы выбрали из них химические элементы. Границу между высокотоксичными и токсичными провели по 50-й позиции таблицы, а между токсичными и слаботоксичными – по 135-й.

Высокотоксичные элементы в порядке уменьшения токсичности: – мышьяк, свинец, ртуть, кадмий, хром, фосфор, бериллий, таллий.

Токсичные элементы в порядке уменьшения токсичности: — кобальт, никель, цинк, радий, уран, торий, радон, медь, плутоний, полоний, стронций, америций, барий, актиний и остальные актиниды, йод.

Слаботоксичные элементы в порядке уменьшения токсичности: — марганец, селен, бром, палладий, алюминий, ванадий, фтор, цезий, калий, серебро, сурьма, редкоземельные металлы (за исключением скандия и иттрия), галлий, германий, ниобий, теллур, тантал и висмут.

Радиоактивность. Для обозначения радиоактивности применён серый цвет (как будто чёрный частично распался). У долгоживущих элементов серым обозначено русское название; у элементов со временем полураспада менее суток — латинский символ (чем больше серого, тем выше радиоактивность).

- В **10** классе развиваются и углубляются знания органической химии. Одновременно биология в 10 классе начинается с изучения содержания химических элементов в организме; макро- и микроэлементов. Здесь в дополнение к ХИМ-таблице очень полезна БИО-таблица. Это межпредметная связь в самом лучшем виде.
- В 11 классе развиваются и углубляются знания неорганической химии. Здесь в дополнение к ХИМ-таблице очень полезна ФИЗ-таблица. Она весьма полезна в следующих разделах школьного курса: общая характеристика неметаллов, общая характеристика металлов, а также в конце курса обучения при обобщении материала. Это тема 3. СТРОЕНИЕ АТОМА И ПЕРИОДИЧЕСКИЙ ЗАКОН; тема 7. НЕМЕТАЛЛЫ; тема 8. МЕТАЛЛЫ. Здесь также полезна БИО-таблица. Сведения о токсичности могут быть использованы при изучении темы 9. ХИМИЧЕСКИЕ ВЕЩЕСТВА В ЖИЗНИ И ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА; в частности раздела «Охрана окружающей среды от вредного воздействия химических веществ». Также эти сведения полезны при изучении раздела биологии «Угроза экологических катастроф и их предупреждение» в 11 классе; это также пример межпредметных связей.

Кроме этого информация, содержащаяся в таблицах может использоваться при проведении факультативных занятий: «Химия неметаллов и жизнь» (9 класс); «Решение олимпиадных задач по физической химии» (10-11 классы); «Зкология человека и эволюция биосферы» (11 класс).

Использованные источники:

- 1 Сайто, К. Химия и периодическая таблица. М.: Мир, 1982. 320 с.
- 2 https://ru.wikipedia.org/wiki/Периодическая система химических элементов.
- 3 https://en.wikipedia.org/wiki/Electronegativity.
- 4 https://ru.wikipedia.org/wiki/Электроотрицательность.
- 5 https://en.wikipedia.org/wiki/Composition_of_the_human_body#Elemental_composition_list.
- 6 https://www.atsdr.cdc.gov/SPL/index.html.
- 7 Курилина, Е. С. Химические, биологические, физические свойства элементов таблицы Д. И. Менделеева // Е. С. Курилина, С. Л. Курилин Біялогія і хімія, № 4, 2018. C. 20-24.

Отзывы и предложения: s.kyrilin@mail.ru.